
ASPHÄRISCHE OPTIKEN & FREIFORMFLÄCHEN

HOHE BILDQUALITÄT, GERINGES GEWICHT

ASPHÄRISCHE OPTIKEN & FREIFORMFLÄCHEN.

Die SwissOptic AG, Unternehmen der Jenoptik Gruppe, ist Ihr Partner für die Entwicklung und Fertigung kundenspezifischer Asphären und Freiformflächen.

Der Einsatz von Asphären in optischen Systemen ermöglicht eine bessere Performance mit weniger optischen Elementen. Dies erlaubt eine kompaktere Bauweise mit geringerem Gewicht und geringeren Verlusten.

Vier Gründe, warum Sie Asphären von der SwissOptic AG wählen sollten:

- 1. Umfangreiche Fertigungskompetenz zur Herstellung von hochpräzisen asphärischen Optiken
- 2. Innovative Messtechnik
- 3. Schnelligkeit und Flexibilität
- 4. Vollständige Prozesskette im Haus

SCHNELLIGKEIT/FLEXIBILITÄT

Wir gehen flexibel auf Ihre individuellen Wünsche ein, verfügen über eine sehr schnelle Prozessentwicklung und setzen proprietäre Korrekturmethoden ein. Die von uns entwickelte mehrstufige Prozesskette zur Herstellung asphärischer Optiken besteht aus verschiedenen Schleifprozessen sowie computergesteuerten Polierprozessen. Die Prozesskette kann flexibel angepasst werden, um eine breite Palette von Kundenwünschen wie beispielsweise doppelseitige Asphären zu erfüllen.

INNOVATIVE MESSTECHNIK

Die Fertigung von hochpräzisen Asphären ist eng mit der nanometergenauen Charakterisierung der bearbeiteten Oberfläche verbunden. Zur vollflächigen Vermessung der Asphären verwenden wir je nach Anwendung das Asphäreninterferometer Verifire Asphere, betriebsintern designte computergenerierte Hologramme oder ein neu entwickeltes Tilted-Wave Interferometer.

VOLLSTÄNDIGE PROZESSKETTE IM HAUS

Bei uns bekommen Sie alles aus einer Hand. Wir bilden die vollständige Prozesskette inhouse ab.

SPEZIFIKATIONEN

Materialien

Optische Gläser, Quarzglas, Zerodur®, kristalline Materialien, Mettalle

Dimensionen und Formen

Durchmesser (± Toleranz)	12-350 (±0,03) mm
Mittendicke Toleranz	±0,01 mm
	· <u>- </u>
Freie Apertur	bis 100 % vom Ø
Lokaler Krümmungsradius konkav	> 10 mm
Abweichung von Best-Fit-Sphäre	bis zu einigen Millimetern

Formabweichung

Pfeilhöhendifferenz (SAG, "Power")	±0,3 µm
Irregularität (IRR, "PV")	80 nm
RMS Irregularität (RMSi)	10 nm
Steigungsfehler ("Slope"), 1 mm Integrationslänge	0,06 mrad

Zentrierung

Randdickendifferenz	3 μm
Dezentrierung Asphäre zu Rand	3 μm

Oberfläche

Oberflächenrauheit Rq	0,5 nm
Oberflächenunvollkommenheit	3 x 0,063 (ISO 10110-7) 20–10 (MIL-Scratch/Dig)
Vergütung (UV, DUV, VIS, NIR, IR)	AR, BBAR, HR-Spiegel, kunden- spezifische Schichtentwicklungen

Messtechnik

Formabweichung interferometrisch	Zygo Verifire Asphere, CGH Technologie, Tilted-Wave-Inter- ferometer
Profilometer taktil	MarSurf LD 260 Aspheric, Form Talysurf PGI 1000
Profilometer optisch	MarFrom MFU 200 Aspheric 3D
Oberflächenrauheit	Weisslichtinterferometer Zygo NewView 700